SVM with Stochastic Parameter Selection for Bovine Leather Defect Classification
نویسندگان
چکیده
The performance of Support Vector Machines, as many other machine learning algorithms, is very sensitive to parameter tuning, mainly in real world problems. In this paper, two well known and widely used SVM implementations, Weka SMO and LIBSVM, were compared using Simulated Annealing as a parameter tuner. This approach increased significantly the classification accuracy over the Weka SMO and LIBSVM standard configuration. The paper also presents an empirical evaluation of SVM against AdaBoost and MLP, for solving the leather defect classification problem. The results obtained are very promising in successfully discriminating leather defects, with the highest overall accuracy, of 99.59%, being achieved by LIBSVM tuned with Simulated Annealing.
منابع مشابه
Defect detection in raw hide and wet blue leather
This paper presents an important problem for the Brazilian economy, the classification of bovine raw hide and leather, and argues that this problem can be handled by computer vision and machine learning techniques. Some promising results, using standard techniques, like color based models and cooccurrence matrix based texture analysis, are reported. The paper also presents what seems to be the ...
متن کاملParticle swarm optimization for parameter determination and feature selection of support vector machines
Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure, along with the feature selection, significantly influences the classification accuracy. This study simultaneously determines the parameter values while discovering a subset of features, without reducing SVM classification accuracy. A par...
متن کاملParameter determination of support vector machine and feature selection using simulated annealing approach
Support vector machine (SVM) is a novel pattern classification method that is valuable in many applications. Kernel parameter setting in the SVM training process, along with the feature selection, significantly affects classification accuracy. The objective of this study is to obtain the better parameter values while also finding a subset of features that does not degrade the SVM classification...
متن کاملPre-Trained Convolutional Neural Network for Classification of Tanning Leather Image
Leather craft products, such as belt, gloves, shoes, bag, and wallet are mainly originated from cow, crocodile, lizard, goat, sheep, buffalo, and stingray skin. Before the skins are used as leather craft materials, they go through a tanning process. With the rapid development of leather craft industry, an automation system for leather tanning factories is important to achieve large scale produc...
متن کاملSVM Parameter Optimization based on Immune Memory Clone Strategy and Application in Bus Passenger Flow Counting
The performance of support vector machine (SVM) depends on the selection of model parameters, however, the selection of SVM model parameters more depends on the empirical value. According to the above deficiency, this paper proposed a parameters optimization method of support vector machine based on immune memory clone strategy (IMC). This method can solve the multi-peak model parameters select...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007